Multiple-Source Domain Adaptation via Coordinated Domain Encoders and Paired Classifiers

نویسندگان

چکیده

We present a novel multiple-source unsupervised model for text classification under domain shift. Our exploits the update rates in document representations to dynamically integrate encoders. It also employs probabilistic heuristic infer error rate target order pair source classifiers. data transformation cost and classifier accuracy feature space. have used real world scenarios of Domain Adaptation evaluate efficacy our algorithm. pretrained multi-layer transformers as encoder experiments demonstrate whether improvement achieved by adaptation models can be delivered out-of-the-box language pretraining. The testify that is top performing approach this setting.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain Adaptation for Statistical Classifiers

The most basic assumption used in statistical learning theory is that training data and test data are drawn from the same underlying distribution. Unfortunately, in many applications, the “in-domain” test data is drawn from a distribution that is related, but not identical, to the “out-of-domain” distribution of the training data. We consider the common case in which labeled out-of-domain data ...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Domain Adaptation with Adversarial Neural Networks and Auto-encoders

Background. Domain adaptation focuses on the situation where we have data generated from multiple domains, which are assumed to be different, but similar, in a certain sense. In this work we focus on the case where there are two domains, known as the source and the target domain. The source domain is assumed to have a large amount of labeled data while labeled data in the target domain is scarc...

متن کامل

Multiple Source Domain Adaptation with Adversarial Training of Neural Networks

While domain adaptation has been actively researched in recent years, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. Naive application of such algorithms on multiple source domain adaptation problem may lead to suboptimal solutions. As a step toward bridging the gap, we propose a new generalization bound for domain adaptation when there are ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i7.20668